q-Analogues of Freud weights and nonlinear difference equations
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولAnalytic q-difference equations
A complex number q with 0 < |q| < 1 is fixed. By an analytic q-difference equation we mean an equation which can be represented by a matrix equation Y (z) = A(z)Y (qz) where A(z) is an invertible n× n-matrix with coefficients in the field K = C({z}) of the convergent Laurent series and where Y (z) is a vector of size n. The aim of this paper is to give an overview of our present knowledge of th...
متن کاملq-Hypergeometric solutions of q-difference equations
We present algorithm qHyper for finding all solutions y(x) of a linear homogeneous q-difference equation, such that y(qx) = r(x)y(x) where r(x) is a rational function of x. Applications include construction of basic hypergeometric series solutions, and definite q-hypergeometric summation in closed form. ∗The research described in this publication was made possible in part by Grant J12100 from t...
متن کاملSequential Derivatives of Nonlinear q-Difference Equations with Three-Point q-Integral Boundary Conditions
This paper studies sufficient conditions for the existence of solutions to the problem of sequential derivatives of nonlinear qdifference equations with three-point q-integral boundary conditions. Our results are concerned with several quantum numbers of derivatives and integrals. By using Banach’s contraction mapping, Krasnoselskii’s fixed-point theorem, and Leray-Schauder degree theory, some ...
متن کاملDiscrete q–derivatives and symmetries of q–difference equations
In this paper we extend the umbral calculus, developed to deal with difference equations on uniform lattices, to q-difference equations. We show that many of the properties considered for shift invariant difference operators satisfying the umbral calculus can be implemented to the case of the q-difference operators. This qumbral calculus can be used to provide solutions to linear q-difference e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2010
ISSN: 0196-8858
DOI: 10.1016/j.aam.2010.02.003